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The commonly observed phenomenon of steady, viscous, free-surface flow on the outer 
surface of a rotating cylinder is investigated by means of an iterative, integral-equation 
formulation applied to the Stokes approximation of the Navier-Stokes equations. The 
method of solution places no restriction on the thickness of the fluid layer residing on 
the cylinder surface; indeed, results are presented for cases where the layer thickness 
is of the same order of magnitude as the cylinder radius. 

Free-surface profiles and free-surface velocity distributions are presented for a range 
of flow parameters. Where appropriate, comparisons are made with the results of thin- 
film theory; excellent agreement is observed. 

For all film thicknesses and surface tensions, results show a high degree of symmetry 
about a horizontal axis even though the gravity field is vertical. A proof is presented 
that, for vanishing surface tension, this is a consequence of the Stokes approximation. 

1. Introduction 
It is a well-known phenomenon that, if a knife is dipped in a viscous liquid (such as 

syrup) and rotated about a horizontal axis, a certain amount of the liquid can be made 
to remain on the knife as a result of the balance between competing actions of gravity, 
the rotation of the knife, and the viscous forces within the liquid. Intuition suggests 
that the directional, viscous forces generated in a liquid by the rotation of a circular 
cylinder might balance the draining force of gravity to give rise to a steady, two- 
dimensional flow possessing a free surface of stationary profile. 

Beginning with the case of infinite viscosity, in which the fluid volume moves as a 
rigid body with the cylinder, Pukhnachev (1974, 1977) used contraction mapping 
techniques to prove the existence of a steady-state solution of the Navier-Stokes 
equations for problems in which part of the fluid domain was bounded by a moving, 
rigid surface, and part by a free surface. Moffatt (1977) studied the problem in the thin- 
film r6gime and found an approximate expression for the maximum load. Using 
kinematic wave theory, Moffatt (1977) proceeded to investigate the onset of 
instabilities; he also performed experiments with which to compare his theoretical 
results. Using a thin-film theory, Preziosi & Joseph (1988) confirmed Moffatt’s 
maximum-load condition and performed experiments which they too compared with 
theory. 

In $2, we consider the problem in the Stokes approximation. This approximation 
may be justified by noting that, for the water-syrup mixture used in Moffatt’s (1977) 
experiments, the dynamic viscosity, p, was approximately 80 g cm-’ s-’. Thus, with a 
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density, p, of approximately 1 g ~ m - ~ ,  and a radius, a, of 1 cm, the Reynolds number, 
defined as R E  pa2w/p, is of the order lO-l ,  even for w as high as 2.n s-l (i.e. one 
revolution per second). 

Since the flow is incompressible, a biharmonic stream function may be introduced, 
as in $2, to formulate the problem as an integral equation over the free surface. In 
classical biharmonic problems, two boundary conditions suffice but, since the location 
of the free surface is here a priori unknown, three boundary conditions have to be 
applied thereon; one each for normal and shear stress, and one reflecting zero flux 
across the (stationary-profile) surface. In $3 we present a derivation of an integral- 
equation formulation, as well as a summary of the subsequent numerical solution 
procedure. Section 4 contains a discussion of results obtained from the integral- 
equation approach, some of which are compared with those obtained from thin-film 
theory. 

One advantage of the integral-equation formulation presented here is that there is no 
restriction on the thickness of the fluid layer which can be so investigated, hence we are 
able to extend our parameters beyond those of the thin-film r6gime. However, we make 
no attempt here to discuss results for high rotation rates since we know, from the 
experimental evidence of Moffatt (1977), that, as w is increased, surface instabilities 
appear and the flow ceases to be even approximately two-dimensional. 

We conclude this section by remarking that, far from being a purely mathematical 
exercise, this problem is motivated by the very real applications inherent in a multitude 
of industrial roller-coating processes. Moffatt (1977) gives a brief summary of the 
potential areas of application, and Malone (1992) and Thompson (1992) give extensive 
and up-to-date rCsum6s of experimental, theoretical and numerical work in this field. 

2. Governing equations and boundary conditions 
We consider a circular cylinder of radius a which rotates about a horizontal axis with 

a constant angular velocity w.  The cylinder is covered by an annular layer of viscous 
fluid. We wish to find the motion of the fluid and, in particular, the shape of the 
stationary fluid surface when the motion is steady. 

We assume that the fluid is incompressible, that the Stokes approximation is 
applicable, and that there is no flow in the axial direction. Under these assumptions, 
the flow is two-dimensional. If the curves C and S are those representing respectively 
the cylinder and free surface (see figure l), then the flow in the annular region between 
them can be expressed in terms of a stream function, $, with corresponding velocity 
field u = (a$/ay, -a$/ax). 

With the y-axis vertical, the equations of motion are 

where p is the pressure, g the acceleration due to gravity, p the density, and p the 
dynamic viscosity of the fluid. On S, the stream function is a constant and, since the 
velocity field determines $ only to within an arbitrary additive constant, we set $ = 0 
on S.  Furthermore, the shear stress vanishes on S and the normal stress there is due 
solely to surface tension. Under the stream-function formulation, these two facts are 
expressed by the conditions 
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* x  

FIGURE 1. A circular cylinder, covered by a layer of viscous liquid, 
rotating in the direction of the arrow. 

Here a/aT and a/aN denote differentiation with respect to Cartesian coordinates in the 
directions of the tangent and outward normal (see figure l), v is the surface tension, 
and K is the curvature of S, K being positive if the centre of curvature is in the direction 
of the outward normal. On C, the stream function also assumes a constant value, and 
the no-slip condition requires the fluid velocity there to equal that of the roller surface. 
Thus, with a /dN denoting differentiation in the direction of the normal pointing into 
the cylinder, the boundary conditions on C(r = a) are 

a$ @ = constant, - = wa. aN 

We non-dimensionalize the above equations using the cylinder radius a as the 
lengthscale, wa as the unit of velocity, and wp as the unit of stress. In the ensuing 
analysis, non-dimensional variables are represented by the same symbols as those with 
dimensions. The non-dimensional equations of motion are 

with boundary conditions 

on S, and 

4 

J 
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on C. The non-dimensional surface tension a and acceleration due to gravity y are 

0- Pga a=--- y = - .  
given by 

qua’ UP 

If the total fluid mass per unit length of the cylinder is given, the total fluid flux, 
in (2.6) is not known apriori. However, it can of course be evaluated when the flow in 
the fluid annulus has been determined. Conversely, if is given, the total mass per unit 
length of the cylinder is a priori unknown, but can be computed once the solution has 
been obtained. In our integral-equation approach to the problem it is convenient to 
choose the latter alternative. 

3. Integral-equation formulation 
The problem defined in $2 is solved by means of an integral-equation method similar 

to one previously applied by Hansen (1987), who used an integral formula for the 
stream function, incorporating all of the boundary conditions, to establish a Fredholm 
integral equation of the second kind with only one unknown, namely the tangential 
fluid velocity on the free surface, vT. 

In the equation for vT, the integral is taken along the curves C and S introduced in 
the previous section. With a suitable choice of Green function, certain contributions to 
the integral along C can be evaluated exactly, while others can be annihilated, thus 
leaving us with a formula for the stream function expressed in terms of an integral, 
along S, containing vT. From that formula, we derive an integral equation for uT on 
S.  In order to solve the integral equation for vT, we must specify an initial 
approximation, S(O), to the a priori unknown S. Solution of this equation gives us, in 
an obvious notation, a solution function, v$?, which we then insert into the integral 
formula for the stream function which, via (2.5), should vanish on S. However, at a 
chosen set of collocation points on So), $ will not (in general) vanish; these non-zero 
values are used to obtain a new approximation, S(l) ,  to S.  The iterative process is 
repeated until a surface S(m), mE N, is obtained for which < c at all collocation 
points on S‘”), for some prespecified tolerance c > 0. 

We begin with the formula 

which expresses the value of a biharmonic function @ at an arbitrary point r’ in a 
region R, with boundary aR, in terms of $ and its derivatives on i3R. In (3.1), ~ ’ E R  
and G = G(r’, r)  is a fundamental solution of the biharmonic equation which we 
further require to vanish, along with its normal derivative, on C. (If r ’ ~ a R ,  a factor 

multiplies the left-hand side of (3. l ) . )  All functions of @ are evaluated at r~ i3R, and 
ds = ds(r). 

Of course, several such fundamental solutions (with different behaviour at infinity) 
exist; they can be found by using separation of variables and subsequently summing 
the Fourier series in order to express the solutions in closed form. We chose to use the 
fundamental solution given by 

- (r” - 1) (r2 - 1)  , 1 r’21r”-r12 
(r‘-r(’ 

where r = Irl, r’ = Ir’I, and r” = r‘/r’’. One may verify that G = aG/ar = 0 on r = 1. 
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= C u S,  and the stream function inserted for $, in which 
case the integral is equal to $(r’) for an arbitrary point Y’ within the fluid region. We 
now use the fact that G and its normal derivative vanish on C, together with boundary 
conditions (2.6), to find that the contribution to the stream-function integral from the 
cylinder surface is 

We apply (3.1) with 

which, upon using (3.2), we may evaluate exactly to be 

;( 1 - P )  + kn. (3.4) 

Since $ = 0 on S,  the last term in the integral in (3. l), taken along S, vanishes. With 
the directions of the tangent and normal vectors on S as shown in figure 1, the 
equations of motion imply that 

where Ty is the y-component of the tangent vector. In order to rewrite the integral of 
the remaining terms we express the derivatives, used in (2.2), in terms of derivatives 
with respect to the free-surface arc length s and the normal direction: 

(3.7) 

Here, f is any twice-differentiable function. We now apply the normal stress condition 
on S, use (3.6) and integrate by parts to rewrite (3.5) as 

Applying the shear stress condition on S, together with (3.7), we find the second term 
in the integral in (3.1) to be 

Combining the expressions for the various terms in the integral in (3.1) and using (3.7) 
once more, we obtain the following integral formula for the stream function at an 
arbitrary point in the fluid region: 

In (3.10), the unknown vT = -c?$/aN is the tangential fluid velocity, in the 
anticlockwise direction, at the fluid surface. 
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We can now derive an integral equation for vT by taking the derivative of both sides 
of (3.10), with respect to the primed coordinates, in the direction of the normal to S 
at a point ro E S. Thereafter, we let r‘ approach yo to obtain the following Fredholm 
equation of the second kind, 

Equation (3.11) holds for all s’ E S. 
In the numerical solution procedure, we find the position of the boundary S and 

surface velocity uT by means of an iterative, minimax optimization method developed 
by Madsen (1975) and implemented in the Fortran routine MIOINF described in 
Madsen, Hegelund & Hansen (1991). First So), an initial approximation to S, is 
chosen. A set of collocation points are uniformly distributed along So), which points 
are free to move along the normals to 9’) during the optimization process. Subsequent 
approximations, P) (m 2 I), are defined by the displaced collocation points. The 
tangent and curvature of the current approximation S(m)  are taken as those of the circle 
passing through the updated collocation point and its immediate neighbours. In 
between collocation points, S(m)  is represented by quadratic parameterization. The 
unknown free-surface velocity is approximated by a continuous function which is 
linear between collocation points. 

The described discretization of the original integral equations yields a system of 
linear algebraic equations in which the number of unknowns is equal to the number of 
collocation points. The elements of the coefficient matrix are, from the above analysis, 
integrals of the products of boundary element functions and derivatives of the Green 
function (3.2); they are all regular and are computed herein by means of a four-point 
Gauss formula. The integrals of G in (3.10) and T,(aG/BN’) in (3.11) contain terms 
with logarithmic singularities at r = r’; they are evaluated by means of a four-point 
Berthod-Zaborowski formula. The algebraic equations are solved by means of the 
Fortran NAg routine F04JGF. 

At each step of the iteration, (3.11) is solved on Srn) and the solution is inserted 
into (3.10), the integral being taken along P). If, at any collocation point ~ ’ E S ( ~ ) ,  
I$(r’)I > 8, a new approximation S(rn+l) is found and the process repeated. 

4. Results and discussion 
The method described in $3 has been used to determine the free-surface profile, S, 

and corresponding velocity, uT, for a number of values of the non-dimensional 
parameters $o, y and a. In all cases discussed below, results were obtained from an 
initial free-surface approximation, S(O), comprising 32 uniformly-distributed collocation 
points; results obtained using more collocation points did not differ, to the presented 
accuracy, of those discussed below. In most cases, S‘O) was taken as a circle of radius 
1 -I- $o, concentric with the cylinder. In those cases where S was expected to differ 
substantially from a circle (e.g. for large S(O) was taken as S calculated using a 
slightly smaller value of @,,. 

The upper bound for the absolute value of the stream function at the collocation 
points was e = We observed that, depending on the parameters $o, y and a, the 
CPU time (on an IBM 3090/VF-I80E computer) required to find S was in the range 
50-70 s. Physical intuition would suggest the existence of a maximum supportable fluid 
load for a given rotation rate. Correspondingly, we predicted a maximum value of $o 
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for which convergence would occur. Numerical experiments did indeed reveal that, for 
each value of y, there was a maximum value of $o for which convergence could be 
obtained. In all cases for which convergence was found to occur, it did so in less than 
100 s CPU time. 

In the subsequent analysis and discussion, the fluid surface is represented (in 
standard polar coordinates) by r = 1 +h(0) ,  with 0 defined as in figure 1. In the event 
that 0 < h 4 1, it is to be expected that the velocity field and free-surface profile may 
be found using thin-film theory. This line of approach was pursued by Moffatt (1977) 
and Preziosi & Joseph (1988). 

Let u(r, 0) and w(r, 0) be, respectively, the tangential and radial components of the 
fluid velocity. In keeping with the thin-film approximation, Preziosi & Joseph (1988) 
replace the exact, nonlinear, equation of motion by 

They then replace the exact condition expressing the vanishing of shear stress at the 
free surface, 

= 0 on r = 1+h(0),  

by the approximate condition 

The no-slip condition on the cylinder is 

u = l  o n r = 1 .  (4-4) 

Equation (4.1) may be solved, subject to (4.3) and (4.4), to yield 

If one now substitutes r = 1 +T/ into (4.5), expands the braced term in powers of 
~ ( 0  < 7 6 l), and omits terms of cubic and higher order in T/  and h, one obtains 

u(1 +7/,0) = 1 +7-;yCosBT/(2h-T/), (4.6) 

in accordance with (3.1) and (3.2) of Preziosi & Joseph (1988). We mention that, to this 
order in y and h, (4.6) also arises if (4.1) is replaced by the simpler equation 

(4.7) 

As expected, the velocity given by (4.6) reduces to rigid-body rotation as y-f 0 (v+m). 
If y is now large, the maximum load can be expected to be so small that the 

corresponding layer thickness is within the region of validity of the above expression 
for u. When using (4.6) to find the maximum load, Preziosi & Joseph (1988) therefore 
neglect the term 7, thereby obtaining the same expression for u as given in Moffatt 
(1977). 
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FIGURE 2.  The maximum fluid flux, $o, as a function of the parameter y. For each value of y, the 
lower cross denotes $o, tee largest value of $,, for which a converged surface profile could be found; 
the upper cross denotes $o, the smallest value for which no such convergence was observed. 

From (4.6) an approximation to $o, the total flux, is obtained by radial integration 
of u across the fluid layer: 

= r u d q  = h+?&2-iy~~s19h3 
0 

(4.8) 

Since q+o is a constant, (4.8) expresses the fact that (in the thin-film approximation) h 
must be weakly dependent on 8. In the limit of small h, and hence small ?,90, we solve 
(4.8) for h by representing h as a power series in lcr0 and equating coefficients. We find 
that, to third order in q+o, 

h = q+o- f? ,9~+[$y~~~19+~]? ,9~ .  (4.9) 
The main point to observe from (4.9) is that, to the extent that thin-film theory is 
applicable, h is indeed only weakly dependent on 19, such variation as there is being only 
third order in 1Cr0. 

It is intuitively obvious that the maximum fluid mass which can be supported by the 
rotating cylinder is a decreasing function of y. In order to investigate this dependency 
quantitatively, several series of numerical experiments were undertaken, using the 
integral-equation method described above. Surface tension effects were neglected by 
setting a = 0. Thereafter, a series of computations, with increasing values of $,,, was 
undertaken . 

As discussed above, convergence to a stationary S, when it did occur, always did so 
in less than 100 s CPU time. We therefore interpreted a CPU time of greater than 200 s 
without convergence having occurred as being indicative that the value chosen for $o 
was larger than that corresponding to the maximum supportable load. When such a 
value of q+o had been reached, more detailed numerical experiments were performed So 
narrow the interval between a value, $o, for which convergence did occur, and one, $,,, 
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0 5 10 15 20 25 
Y 

FIGURE 3. The largest non-dimensional fluid cross-section supported by the cylinder, as a function of 
y .  The dots correspond to the lower set of crosses in figure 2. In all cases, CL = 0. ----, Moffatt 
(1977); -, Kelmanson (1994). 

for which it did not. Calculations were continued until &, - $, < lop2. Figure 2 shows 
both $, and $,, for a range of values of y ,  whilst figure 3 shows the non-dimensional 
area of the fluid cross-section corresponding to &, over the same range. In figure 3, 
these areas, which correspond to maximum-supportable loads, are represented by 
dots; the dashed line is the maximum load predicted by Moffatt (1977); the solid line 
is the maximum load predicted by the theory of Kelmanson (1994). For y 2 5 (i.e. in 
the valid region for thin-film theory), the present results and those of Kelmanson 
(1994) agree, for all y, to within a relative error of lo-'. 

Table 1 shows a comparison between the fluid-layer thickness evaluated using 
formula (4.9) with that obtained from the integral-equation procedure; the angle 8 is 
as shown in figure 1. Note that the degree of agreement between the values is high when 
$, = 0.05, and slightly poorer when $o = 0.1 ; this is to be expected because of the 
assumptions underlying thin-film theory. 

Table 2 shows a similar comparison for the free-surface velocity vT = u( 1 + h, #). The 
velocities predicted by thin-film theory were found by inserting the values of h, given 
by (4.9), into formula (4.6) with 7 = h. Once more, agreement is better, at most surface 
locations, for $o = 0.05 than for $, = 0.1. It is also evident that such agreement is 
better at 8 = 180°, where the fluid layer is thinnest, than at 0 = 0, where it is thickest; 
this, of course, is in complete agreement with thin-film theory. 

Figures 4 and 5 (the latter of which uses different vertical scales for the plots) show, 
respectively, the surface profile and surface velocity distribution for CL. = 0, y = 5 and 
a range of values of $,. Results for y = 5 are typical of those at other y values: the 
surface S is almost circular and concentric with the cylinder until $, is close to $, 
which, for this value of y, is 0.355. 

The free-surface velocity is, of course, greater on the side where the motion is in the 
direction of gravity than on the side where it is opposed by gravity. As expected, for 
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C t = O  

8 

0 
45 
90 

135 
180 
225 
270 
315 

a=O 
I3 
0 

45 
90 

135 
180 
225 
270 
315 

y = l  
h* 

0.048 85 
0.048 84 
0.04881 
0.048 78 
0.048 77 
0.048 78 
0.048 8 1 
0.048 84 

y = 5  
h* 

0.04902 
0.048 96 
0.048 81 
0.048 67 
0.048 60 
0.048 67 
0.048 8 1 
0.048 96 

= 0.05 
h 

0.048 87 
0.04885 
0.048 83 
0.048 80 
0.048 79 
0.048 80 
0.048 83 
0.04885 

= 0.05 
I? 

0.04903 
0.048 97 
0.048 83 
0.048 69 
0.048 63 
0.048 69 
0.04883 
0.04897 

a = o  
8 
0 

45 
90 

135 
180 
225 
270 
315 

a = O  
I3 
0 

45 
90 

135 
180 
225 
270 
315 

y = l  
h* 

0.09583 
0.09574 
0.095 50 
0.09526 
0.095 17 
0.09526 
0.095 50 
0.09574 

y = 5  

h* 
0.097 17 
0.09668 
0.095 50 
0.09432 
0.093 83 
0.094 32 
0.095 50 
0.09668 

~- 

$" = 0.10 
h 

0.09575 
0.09566 
0.09545 
0.09524 
0.095 15 
0.095 24 
0.09545 
0.095 66 

= 0.10 
h 

0.09702 
0.09654 
0.09545 
0.09442 
0.09402 
0.09442 
0.09545 
0.096 54 

TABLE 1. The fluid film thickness found from thin-film theory, h*(B), and numerically, 
h(B), for various parameter values 

a=O y =  1 +o=0.05 a=O y = l  
0 0; V T  0 0; 

0 1.0477 1.0462 0 1.0912 
45 
90 

135 
180 
225 
270 
315 

a=O 

0 
0 

45 
90 

135 
180 
225 
270 
315 

.0480 
,0488 
,0496 
.0500 
.0496 
,0488 
,0480 

y = 5  

0; 

1.0430 
1.0447 
1.0488 
1.0529 
1.0545 
1.0529 
1.0488 
1.0447 

.0465 45 1.0925 

.0474 90 1.0955 

.0483 135 1.0985 

.0487 180 1.0997 

.0483 225 1.0985 
,0474 270 1.0955 
,0465 315 1.0925 

$o = 0.05 

0, 

1.041 1 
1.0430 
1.0474 
1.0518 
1.0536 
1.0518 
1.0474 
1.0430 

a = o  
e 
0 

45 
90 

135 
180 
225 
270 
315 

y = 5  

0; 

1.0736 
1.0802 
1.0955 
1.1101 
1.1159 
1.1101 
I .0955 
1.0802 

= 0.10 

V T  

1.0888 
1.0903 
1.0938 
1.0973 
1.0987 
1.0973 
1.0938 
1.0903 

= 0.10 

VT 

1.0683 
1.0760 
1.0938 
1.1108 
1.1177 
1.1108 
1.0938 
1.0760 

TABLE 2. The free-surface tangential velocity found from thin-film theory, v;(B), and numerically, 
vT(8), for various parameter values 
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FIGURE 4. The stationary free-surface profile for 01 = 0, y = 5 and $o = 0.1, 0.2, 0.3 or 0.355. 

Ilr, = 0.1, the velocity distribution predicted by thin-film theory agrees well with that 
given by the numerical solution; this agreement deteriorates as +, increases. It is 
interesting to note that, in all cases examined, thin-film theory underestimates the 
variation in free-surface velocity and that, for all values of +o, the approximation is 
better at 6 = 180", where the fluid layer is of minimum thickness, than it is at 6 = 0, 
where the layer attains its maximum thickness. It is also noteworthy that, even for +, = 0.3, where the fluid mass is 79 % of that supportable with $o = 0.355, the lowest 
value of the free-surface velocity is only slightly less than that at the cylinder surface. 

Plots of the surface profile and velocity distribution for other values of y (and the 
corresponding value of +o) are given in figures 6 and 7. Of all cases considered, the 
surface profile in figure 6(u) (y = 1, +o = = 1.010) displayed the greatest deviation 
from a circle; its corresponding velocity distribution is shown in figure 6(6). In the 
profile of figure 7(u) (+ = 2, @, = $o = 0.635), the layer thickness at 6 = 0 is smaller 
than the corresponding one in figure 6(u), and so it is somewhat surprising that the 
surface velocity at 8 = 0 (see figure 7b)  is less than that shown in figure 6(b). This 
implies that, even for large supported fluid masses, the rigid-body effect, represented 
in thin-film theory by the h e a r  term, 7, in (4.6), is still important in comparison with 
the gravity effect, represented in thin-film theory by the term -4ycos 87'. 



104 E. B. Hansen and M .  A .  Kelmanson 

0.5 

Y O  

-0.5 

0.5 1 .o I .5 2.0 
31 

FIGURE 8. Expanded detail, near 0 = 0, of stationary free-surface profiles for y = 1 and $, = 0.9; 
, a = 100. __ a = 0 .  _ _ _ _  

a = O  y = l  $o = 0.9 

I3 h V T  

0 0.844727 887709640 1.2853 
45 0.784 172630374 174 1.3910 
90 0.687661 104 747 609 1.6191 

135 0.627275 505 539659 1.8090 
180 0.608 174135735756 1.8781 
225 0.627275 505 539659 1.8090 
270 0.687661 104747609 1.6191 
315 0.784 172630374 174 1.3910 

TABLE 3. Fluid film thickness, h(B), and free-surface tangential velocity, uT(B), 
for a = 0, y = 1 and $o = 0.9 

a =  100 
0 
0 

45 
90 

135 
180 
225 
270 
315 

y = l  
h 

0.808971 357855 722 
0.772846 196755399 
0.698 743060359047 
0.629 343 045 091 761 
0.599491 825 167775 
0.627079025855 326 
0.702029318 255 682 
0.779970779 509 766 

$, = 0.9 

UT 

1.3437 
1.4178 
1.5950 
1.8020 
1.9057 
1.8078 
1 S860 
1.4043 

TABLE 4. Fluid film thickness, h(B), and free-surface tangential velocity, uT(B), 
for a = 100, y = 1 and t,k0 = 0.9 
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very small. Figure 8 displays the fact that, even if a large surface-tension effect is 
incorporated, the surface profile remains close to being symmetric about the x-axis. 
However, the fact that surface tension does indeed break the symmetry is reflected in 
table 4, which shows numerical results h(8) and vT(8) for the parameters a = 100, y = 1 
and $o = 0.9: if one compares tables 3 and 4, symmetry of results has disappeared 
when a is non-zero. 

The authors wish to express their gratitude to both Professor Kaj Madsen, for 
making the subroutine MIOINF available to them, and to Professor H. K. Moffatt, for 
bringing to their attention the paper by Preziosi and Joseph. 

Appendix 
In the absence of surface tension (a = 0), the solution of the boundary-value problem 

represented by (2.4) to (2.6) has the following properties: the stream function is an 
even function of y ;  the pressure is an odd function of y ;  the free surface is symmetric 
about the x-axis. We now prove this assertion. 

Let the annular region 52 be bounded within by the unit circle, C (centred at the 
origin), and without by the closed curve, S,  and let a52 = C u S .  Let 52, and S ,  be, 
respectively, the reflections, in the x-axis, of the region 52 and its outer boundary S, and 
let a52, = C u S,. Furthermore, let T and N be a left-handed pair of orthogonal, unit 
vectors at either (x, y )  E 52 or (x, - y )  E 52,, and let N be the unit inward normal on C. 
Figure 9 depicts the geometry so far described. 

Let the functions p = p(x, y )  and $ = $(x, y )  satisfy the following boundary-value 
problem on 52 u a52: 

Consider now the functions q = q(x, y )  and # = #(x, y )  defined by 

4(X,Y)  = - P ( 4  -Y), #(x,y) = $(x, -Y>, (x, --Y)EQ u aQ. (A 4) 

If ( x , y ) ~ Q ,  then (x, - - y ) ~ 5 2 ,  and so (A 1) and (A4) imply that 

a4 aP aA@ -(x,y) = --(x, - y )  = --(x, - y )  = -(x,y).  
ax ax aY aY 

Similarly, 

(A5) and (A6) state that q and # satisfy the Stokes equations in 52,. Now let 
(x, y )  E C ;  then (x, - y )  E C and (A 2) implies that 

#(X,Y) = $ ( X ?  -Y> = $05 (A 7) 
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and 

SR 

FIGURE 9. Schematic flow region and its reflection in the x-axis. 

So, # satisfies boundary conditions (A2) on C. If now ( x , y ) € S R  then (x, -Y)ES. 
Therefore, by the first of (A 3), 

4k.Y) = 1C.k -Y> = 0. 

Moreover, using (A 4), we have 
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by the second of (A 3), since (x, - y )  E S .  Again using (A 4), we have 

107 

by the third of (A3), since (x, -Y)ES. 
We have so far shown that, if the set (p, $, s) is a solution of the free boundary-value 

problem, so is the set { q ,  9, SJ. The Stokes flow under consideration ($,, > 0, R = 0, 
CL E 0) is a particular case of a more general class of flows ($,, > 0, R > 0, a 2 0) to 
which the existence-uniqueness theorem of Pukhnachev (1977) may be applied. 
Therefore, the solution of our boundary-value problem is unique, and the two sets 
described above must be identical. Thus, the pressure field is antisymmetric about the 
x-axis, 

the stream function is symmetric about the x-axis, 
P(X,Y> = - P k  - Y h  

$ ( X , Y )  = 1CEk - Y h  

(A 12) 

(A 13) 
and the free surface S is symmetric about the x-axis. 
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